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The accurate numerical calculation of general quantum time correlation functions for many-body systems is
not possible at present. We discuss several schemes for obtaining approximate quantum time correlation
functions using as input only the corresponding classical results, and assess the merits of each scheme by
considering three exactly solvable model problems. We then turn to the problem of the vibrational energy
relaxation of a high-frequency oscillator in a liquid, where the relaxation rate constant can be related to a
certain quantum force-force time correlation function. Focusing specifically on the case of liquid oxygen,
we calculate the classical force-force time correlation function using a molecular dynamics simulation and
then determine various approximations to the relaxation rate constant by applying the schemes considered
earlier. The Egelstaff scheme is found to lead to reasonable agreement with experiment.

I. Introduction

It is well-known that for condensed phase systems many
experimental observables can be related theoretically to time
correlation functions (TCFs) of appropriate dynamical variables.
And in many cases it is essential that these TCFs be calculated
quantum mechanically, since thermal energies can be small
compared to the relevant energy splittings. While there is much
interest, and has been much progress, in the numerical calcula-
tion of quantum TCFs for many-body interacting systems, a
general, tractable, and reliable method is not yet at our disposal.

On the other hand, the calculation of classical TCFs for many-
body interacting systems is commonplace, either by analytic
methods or by molecular dynamics simulation. It would be very
useful, therefore, if there was some reliable method by which
one could obtain an approximate quantum TCF from its classical
analogue. While a general solution to this problem seems
unlikely, to say the least, several such approximation schemes
have been discussed over the last 40 years.1,2 One of the
purposes of this paper is to examine critically these approxima-
tion schemes by considering three exactly solvable model
problems.

The other purpose of this paper is to apply these various
approximation schemes to a problem of current theoretical and
experimental interest, namely, condensed phase vibrational
energy relaxation.3-6 A simple golden rule calculation shows
that the state-to-state relaxation rate constant is related to the
Fourier transform, at the oscillator frequency, of a certain
quantum force-force TCF.7 If p times the oscillator frequency
is smaller than thermal energies, then it may be possible to
approximate the quantum TCF simply by its classical analogue.
If, however, the oscillator energy is much higher than thermal
energies, the classical approximation is quite poor, and it
becomes essential to use better approximations. As an example
of this latter situation, we consider specifically the vibrational
relaxation of neat liquid oxygen at 70 K.8,9

II. Exact and Approximate Quantum Dynamics

Consider the quantum TCF for a general non-Hermitian
operatorA:

where the time dependence of any operatorO is given by the
Heisenberg expression

H is the Hamiltonian of the system, and the ensemble average
of operatorO is

with â ) 1/kT. This TCF is a complex function oft, but it is
easy to show that it has the following time symmetries:10

We will also be interested in the Fourier transform of the
quantum TCF, defined by

From the first of the time symmetries it follows thatĜ(ω) is
real. It is also straightforward to show thatĜ(ω) g 0. From the
second time symmetry follows the detailed balance condition:
10

DecomposingG(t) into its real and imaginary parts:
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G(t) ) (〈A(t) A†(0)〉 + 〈A†(t)A(0)〉)/2, (1)

O(t) ) eiHt/pOe-iHt/p, (2)

〈O〉 ) Tr[e-âHO]/Tr[e-âH], (3)

G(-t) ) G(t)* ) G(t - iâp). (4)

Ĝ(ω) ) ∫-∞

∞
dt eiωtG(t). (5)

Ĝ(-ω) ) e-âpω Ĝ(ω). (6)

G(t) ) GR(t) + i GI(t), (7)
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one can define the Fourier transforms

so that of course

Since GR(t) and GI(t) are both real and are symmetric and
antisymmetric functions oft, respectively, it is straightforward
to show thatĜS(ω) andĜA(ω) are both real and are symmetric
and antisymmetric functions ofω, respectively.

The detailed balance condition shows thatĜS(ω) andĜA(ω)
are not independent, but in fact are related by1

That means thatĜ(ω) can be related to eitherĜS(ω) by

or to ĜA(ω) by

It is also clear thatGR(t) andGI(t) are not independent; by
expanding the hyperbolic tangent in eq 11 in powers ofω,
performing the inverse Fourier transform term by term, and
resumming, one sees that11

The classical limit is defined byp f 0, and so we can define
Gcl(t) by Gcl(t) ) limpf0 G(t). From eq 14 it is clear that in the
classical limitGI(t) f 0, and sinceGR(t) is a symmetric function
of time, so isGcl(t) (as is well-known). Furthermore, one sees
from taking the classical limit of eq 6 thatĜcl(ω) ) Ĝcl(-ω).
Of particular interest is some sort of semiclassical approximation
to G(t), which will be approximately valid whenp * 0, and
which does satisfy detailed balance. Below we will discuss four
such schemes; for an excellent general discussion of these
schemes the reader is referred to the book by Frommhold.1

The first scheme, associated with the names of Litovitz,12

Berne,10 and Oxtoby,7 which has also been discussed by
Frommhold1 (and probably by many others), and which we
denote as the “standard” approximation, comes about as follows.
In the classical limit by definitionGR(t) ) Gcl(t), and one can
in fact expandGR(t) in powers ofp2,13 Gcl(t) being the zeroth-
order term. The standard approximation is equivalent to simply
takingGR(t) = Gcl(t), even whenp * 0, which at least ensures
that GR(t) is a symmetric function of time. Defining

eq 8 shows that within this approximationĜS(ω) ) Ĝcl(ω), and
then one uses the exact equation 12 to determineĜ(ω):

As a result,Ĝ(ω) does indeed satisfy detailed balance, and from
it G(t) can be obtained by inverse Fourier transformation.

The second approximation scheme, associated with the names
of Wilson,14 Frommhold,1 and Berne,15 which for reasons to
become clear below we denote the “harmonic” approximation,
can be obtained by expanding the tangent in eq 14 to lowest
order inp:

Next, expanding (as above)GR(t) in powers ofp2 and keeping
only the zeroth-order term yields

Upon Fourier transformation we then obtain

Finally, one then uses the exact eq 13 to obtain the approxima-
tion

Note that within this approximationĜ(ω) also satisfies detailed
balance, but, for example, is distinctly different from the
standard approximation in eq 16.

The third approximation scheme, originally due to Schofield,16

can be obtained by combining ideas from the first two schemes
(that is, to expandGR(t) to zeroth order inp, andGI(t) to first
order inp), to arrive at the exact equation

Now suppose that in factG(t) ) Gcl(t + iâp/2). Expansion to
first order in p gives precisely the above equation, and
furthermore this approximation satisfies the required time
symmetries forG(t), which means, for example, that detailed
balance is obeyed. In the frequency domain one obtains

This simple and seemingly attractive approximation, again
distinctly different from the first two, is called the “Schofield”
approximation.

The fourth scheme, first discussed by Egelstaff,17 is closely
related to the Schofield approximation. There is another form
for G(t) that also yields eq 21 when expanded to first order in
p, and also satisfies the required time symmetries, which isG(t)
) Gcl((t(t + iâp))1/2). This, the “Egelstaff” approximation, in
the frequency domain gives18

One feature common to the first three schemes is thatĜ(0)
) Ĝcl(0) (see eqs 16, 20, and 22), a result that is sometimes,
but not generally, correct. The Egelstaff scheme, on the other
hand, does not lead to this equality. The first three schemes
also all giveĜ(ω) g 0 (which, as discussed earlier, is always
true for the exact quantum TCF), sinceĜcl(ω) g 0 (for example,
from the Wiener-Khintchine theorem) and the multiplicative
correction factors in eqs 16, 20, and 22 are all positive. The

GI(t) =
âp
2

d
dt

GR(t). (17)

GI(t) =
âp
2

d
dt

Gcl(t). (18)

ĜA(ω) =
âpω

2
Ĝcl(ω). (19)

Ĝ(ω) ) âpω
1 - e-âpω

Ĝcl(ω). (20)

G(t) ) Gcl(t) + iâp
2

d
dt

Gcl(t) + O(p2). (21)

Ĝ(ω) ) eâpω/2Ĝcl(ω). (22)

Ĝ(ω) ) eâpω/2 ∫-∞

∞
dt eiωt Gcl(xt2 + (âp/2)2). (23)

ĜS(ω) ) ∫-∞

∞
dt eiωt GR(t), (8)

ĜA(ω) ) i ∫-∞

∞
dt eiωtGI(t), (9)

Ĝ(ω) ) ĜS(ω) + ĜA(ω). (10)

ĜA(ω) ) ĜS(ω) tanh(âpω/2). (11)

Ĝ(ω) ) 2

1 + e-âpω
ĜS(ω), (12)

Ĝ(ω) ) 2

1 - e-âpω
ĜA(ω). (13)

GI(t) ) tan(âp
2

d
dt)GR(t). (14)

Ĝcl(ω) ) ∫-∞

∞
dt eiωtGcl(t), (15)

Ĝ(ω) ) 2

1 + e-âpω
Ĝcl(ω). (16)
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Egelstaff scheme does not share this felicitous feature and can
in fact sometimes lead to a negativeĜ(ω) (see below).

In summary, then, we have described four different semiclas-
sical schemes for obtaining an approximation to the quantum
TCF, each of which satisfies detailed balance, and each of which
requires only the classical TCF as input. Our next step is to
evaluate the merits and demerits of these four schemes by
comparing results for three exactly solvable model problems.

III. Results for Exactly Solvable Model Problems

The first model involves the dynamic structure factor for a
free particle in three dimensions. ThusH ) pb‚pb/2m, wherepb is
the momentum andm is the mass of the particle, andA ) eikB‚rb,
whererb is the particle’s position andkB is a wave vector.G(t) as
defined in eq 1 is then

whereFs(kB,t) (the dynamic structure factor) is given by

G(t) can be calculated exactly, with the result that19

whereω0
2 ) k2/2âm. The classical limit is of courseGcl(t) )

e-ω0
2t2. One notices immediately that since in this caseG(t) )

Gcl((t(t + iâp))1/2) the Egelstaff scheme is exact! (This fact has
been appreciated for some time.1)

In this work we will be particularly interested in the
frequency-domain comparison of the various approximation
schemes. To this end we note that for this free-particle problem
one can obtain simple analytic results for bothĜ(ω) and
Ĝcl(ω).

In Figure 1 we compare the exact results forĜ(ω), with the
various approximations toĜ(ω) discussed earlier, as well as
with Ĝcl(ω), for kT/pω0 ) 1/2. One sees that in this case the
Schofield scheme provides the best approximation to the exact
result, differing from it by a constant factor. (Recall again that
the Egelstaff scheme is exact in this case.) The harmonic and
standard approximations (as well as the classical result) all fall
off significantly too fast as frequency increases.

The next exactly solvable problem involves a collection of
harmonic oscillators with HamiltonianH ) ∑kpωk(bk

†bk +
1/2), whereωk are the mode frequencies andbk

† andbk are the

creation and annihilation operators. We next define a collective
coordinate byq ) ∑kck(bk

†+bk) (ck are real expansion coef-
ficients), and the TCFC(t) by C(t) ) 〈q(t)q(0)〉. Now takingA
in eq 1 to beq, in this case we haveG(t) ) C(t). (In the third
model problem, discussed below,C(t) will be defined as above
but G(t) will be different.)

The exact solution forC(t) can be represented conveniently
in terms of the spectral densityΓ(ω) ) ∑k ck

2δ(ω - ωk) and
thermal occupation numbern(ω) ) (eâpω - 1)-1 by2

Note that the classical limit can be obtained easily from this
expression to give

(ck are implicitly proportional top1/2, and soΓ(ω) is implicitly
proportional to p.2) Note also that in this case these two
equations lead to the exact equality

Recall that for a general TCF this equation is only correct to
first order in p, and so the previously discussed “harmonic”
scheme derived from this equation is (in general) only an
approximation. But since for this harmonic model this equation
is exact, it means that the “harmonic” approximation scheme
is exact for this model, hence the name.

To present explicit calculations for this model we must specify
the form of the spectral density, for which we choose (see also
Egorov and Berne20):

with R equal to 1 or 3. For either value ofR, Γ(ω) is normalized
according to

In Figure 2 we show our calculations forĜ(ω) for this model,
taking R ) 1 (“Ohmic dissipation”),λ ) 0.2, andkT/pω0 )
1/2. As in the previous case all results can be obtained

Figure 1. Exact and approximateĜ(ω) for the free particle dynamic
structure factor.kT/pω0 ) 1/2. Figure 2. Exact and approximateĜ(ω) for the harmonic/linear model.

kT/pω0 ) 1/2, λ ) 0.2, andR ) 1.

G(t) ) (Fs(kB,t) + Fs(-kB,t))/2, (24)

Fs(kB,t) ) 〈eikB‚ rb(t) e-ikB‚ rb(0)〉. (25)

G(t) ) e-ω0
2t(t + iâp), (26)

C(t) ) ∫0

∞
dω Γ(ω)([n(ω) + 1] e-iωt + n(ω) eiωt). (27)

Ccl(t) ) 2
âp

∫0

∞
dω

Γ(ω)
ω

cos(ωt). (28)

GI(t) ) âp
2

d
dt

Gcl(t). (29)

Γ(ω) ) 2λ ωR

ω0
R+1

e-ω2/ω0
2
, (30)

∫0

∞
dω Γ(ω) ) λ. (31)
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analytically. One sees that (except for small frequencies) both
Schofield and Egelstaff overestimate the value ofĜ(ω), while
the standard approximation (and the purely classical result) are
underestimates. (Recall again that in this case the harmonic
approximation is exact.) Note the scale on the ordinate! Even
when the value ofĜ(ω) has decreased by 20 orders of
magnitude, the worst approximation scheme is only off by 2
orders of magnitude.

In Figure 3 we show results for the same parameters except
now R ) 3. As in the case forR ) 1 all approximate and exact
results can be obtained analytically. The Egelstaff scheme
actually goes negative forω/ω0 < 1/2! For higher frequencies
the Schofield and Egelstaff approximations overestimate, and
the standard and classical approximations underestimate, the
exact (and harmonic) result. Note again, however, that none of
the approximation schemes is too bad at high frequency, even
when the value ofĜ(ω) has dropped dramatically.

Our final exactly solvable model is closely related to the
above.2 The Hamiltonian is harmonic (as above), andq is
defined identically as above, but nowA ) eq - 〈eq〉. In this
case the TCF is

The exact solution to this TCF is given by21

whereC(t) is given by eq 27. As before, the time domain results
can all be obtained analytically, but now the Fourier transforms
must be performed numerically.

Our numerical results for the same parameters as in Figure 2
are shown in Figure 4. One sees that for this model at high
frequencies the different approximations are quite different. The
Egelstaff result, while clearly an overestimate, is the closest to
the exact result. Results for the same parameters as in Figure 3
are shown in Figure 5. In this case the Egelstaff result again
becomes negative for low frequencies, while at high frequencies
it is the best approximation.

To summarize this section, for the dynamic structure factor
for the free particle the Egelstaff result is exact, and the
Schofield result is off by a constant factor. The harmonic result
can easily be off by several orders of magnitude, especially at
high frequencies and low temperatures. For the harmonic model
the harmonic result is exact, and the Egelstaff and other

approximations can be off by several orders of magnitude. For
the model involving an exponential function of harmonic
coordinates, none of the approximation schemes is exact, but
the Egelstaff approximation generally performs significantly
better than the other schemes. The Egelstaff scheme does,
however, suffer from the unfortunate drawback that it can lead
to negative (unphysical) results at low frequencies.

So we clearly do not yet have a satisfactory solution to this
problem. Indeed, it would not be reasonable to expect one of
these simple schemes, involving only the classical TCF, to be
able to reproduce the quantum TCF for all physical situations.
Nonetheless, under certain circumstances, one or more of these
schemes may provide reasonable approximations to the quantum
TCF.

IV. Applications to Vibrational Relaxation in Liquid
Oxygen

In this section we apply the ideas discussed above to the
physical problem of vibrational energy relaxation (VER) in
liquids. To be specific, consider the VER of neat liquid oxygen,
for which experimental measurements of the vibrational state-
to-state (V ) 1 to V ) 0) relaxation rate constant have been
performed.8 While vibration-vibration (excitonic) energy trans-
fer is surely rampant in liquid oxygen, the experiments measure
only the total population of theV ) 1 state, independent of
whether it has transferred from molecule to molecule during
the course of the experiment. The relaxation mechanism must

Figure 3. Exact and approximateĜ(ω)for the harmonic/linear model.
kT/pω0 ) 1/2, λ ) 0.2, andR ) 3.

Figure 4. Exact and approximateĜ(ω) for the harmonic/exponential
model.kT/pω0 ) 1/2, λ ) 0.2, andR ) 1.

Figure 5. Exact and approximateĜ(ω) for the harmonic/exponential
model.kT/pω0 ) 1/2, λ ) 0.2, andR ) 3.

G(t) ) 〈eq(t) eq(0)〉 - 〈eq〉2. (32)

G(t) ) eC(0) (eC(t) - 1), (33)
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therefore be due solely to vibration-translation and vibration-
rotation channels.9

The simplest way to approach this problem divides the
Hamiltonian into system, bath, and interaction components. The
system is the harmonic oscillator for a single oxygen molecule,
the bath consists of the translations and rotations of all the
oxygen molecules (including the “tagged” one), and the interac-
tion involves the force exerted by the neighboring molecules
on the bond of the tagged one. Within this picture the VER
state-to-state rate constant can be calculated using Fermi’s
golden rule. Translated into the TCF language one finds that9,22

whereG(t) ) 〈δF(t)δF(0)〉 is the quantum TCF of the force
fluctuations on the tagged molecule’s bond, andµ andω0 are
the reduced mass and frequency of the oscillator. Such a
quantum TCF, for say 500 interacting oxygen molecules, is not
possible to calculate at present. And so in order to proceed one
is forced to consider the approximation schemes discussed
herein.

Of course, the big question is which (if any) of the
approximation schemes is appropriate for this problem? There
are several issues to consider. The first involves simply the ratio
of the oscillator frequency (1552.5 cm-1 for oxygen) compared
to kT (about 50 cm-1) at 70 K. The large size of this ratio
indicates that quantum effects are likely to be important (that
is, the purely classical approximation to calculatingĜ(ω) will
fail).

One way to think about the VER process in this system is
similar to multiphonon relaxation in crystals.23,24 That is, one
considers the translations and rotations of the oxygen molecules
in the liquid to be more or less harmonic, with characteristic
frequencies on the order of 50 or 100 cm-1 (above which, for
example, the Fourier transforms of the velocity or angular
velocity TCFs decay considerably). Since the energy gap of the
system is much larger than that, to emit one quantum of oxygen
vibration one must create many quanta of translations and
rotations.9,20,22,25,26This is possible since the force is a strongly
nonlinear function of the (nearly) harmonic coordinates. This
picture is reminiscent of the third model discussed in the
previous sectionsthat of a harmonic bath, but the TCF involves
an exponential function of the coordinates. In that case for the
high-frequency Fourier transform of the TCF we found that the
Egelstaff approximation was the best, implying to us that it
might also be the most appropriate approximation scheme for
the oxygen problem.

An alternative picture is that, presumably because of central
limit theorem arguments, the (classical) force on a given
molecule describes a Gaussian random process. As such, this
force can be thought of as a “coordinate” of an effective
harmonic bath, which because of nonlinear couplings within
the bath has a spectral density that extends well past the
characteristic frequencies described in the preceding paragraph.
In this view, then, the VER process corresponds to the creation
of only one quantum of a very high frequency effective “mode”
of the bath. This picture is equivalent to the purely harmonic
model discussed in the previous section (the bath is harmonic
and the TCF involves a linear function of the coordinates). To
the extent that this scenario is valid, then, the harmonic
approximation discussed above might be the most appropriate
scheme for the oxygen problem. To assess the validity of this
picture, one can consider, for example, a special case of the

four-point TCF: Gcl
4 (t) ) 〈δF(t)2δF(0)2〉cl, which if the force is

“Gaussian” should be equal to〈δF2)cl
2 + 2Gcl(t)2.

We have performed a classical molecular dynamics simulation
of neat rigid oxygen at 70 K,9,27 and from the simulation we
have obtained the fluctuating force on the bond of a tagged
oxygen molecule. Our result forGcl(t) is shown in Figure 6. In
Figure 7 we show the comparison of the four-point TCF
discussed above and its Gaussian decomposition. We see in fact
that the force does not appear to be very Gaussian. This is really
not surprising: since the intermolecular force is such a quickly
varying function of distance, essentially only a few neighboring
molecules contribute to the total force on a given molecule at
any given time,26 whereas for the central limit theorem to apply
one needs many independent and roughly equal magnitude
contributions. This observed non-Gaussian behavior of the
fluctuating force would seem to indicate that the harmonic
approximation scheme would not be appropriate for oxygen.

The Fourier transform ofGcl(t) is shown in Figure 8. Also
shown is the Egelstaff approximation toĜ(ω), obtained from
eq 23 numerically. It is seen that the Fourier transforms are
only reliable up to about 500 or 600 cm-1, whereas according
to eq 34 they need to be evaluated at 1552.5 cm-1. We have
discussed several approaches toward extending the frequency

k1f0 )
Ĝ(ω0)

2µpω0
, (34)

Figure 6. Classical force-force TCF for liquid oxygen at 70 K.

Figure 7. Comparison of〈δF(t)2δF(0)2〉cl (solid line) and〈δF2〉cl
2 +

2Gcl(t)2 (dashed line).
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range, using the Wiener-Khintchine theorem, or using an
analytical ansatz forGcl(t) whose parameters can be determined
from a short-time expansion.9 Here we simply perform a linear
(on a log plot) extrapolation of the displayed Fourier transforms,
which is essentially equivalent to assuming that the VER rate
exhibits an exponential energy gap law.22,28

Using these results, eq 34, and the expressions in section II,
we can then compare the predictions of the various approxima-
tion schemes to the VER rate for the oxygen problem. The
different results, together with the experimental rate, are shown
in Table 1. One sees that the different approximation schemes
give wildly different results, that the classical result is off by
orders of magnitude (as anticipated), that the harmonic ap-
proximation is not in good agreement with experiment (also as
anticipated), and that the Egelstaff approximation is in surpris-
ingly good agreement with experiment.

Of course the success of the Egelstaff result could be
fortuitous, arising from a cancellation of errors due to (1) the
approximation scheme, (2) the extrapolation to high frequencies,
and (3) the intermolecular potential. While we cannot rule out
any of these possibilities, regarding the third one we do note
that this same system has been studied using a potential function
with quite different parameters, and the result for the VER rate
is similar (differing by about a factor of 5).29

V. Conclusion

The accurate numerical calculation of quantum time correla-
tion functions for many-body systems is not yet at hand. We
have discussed several schemes for obtaining approximate
quantum TCFs using as input only the corresponding classical
TCFs and have tried to assess the merits of each scheme by
comparing the results for exactly solvable model problems. It

is clear that no scheme will work well for all physical problems.
We then considered the difficult theoretical problem of the
energy relaxation of a high-frequency vibration in a simple
liquid. Our calculations indicate that for liquid oxygen at 70 K
the Egelstaff scheme may provide a reasonable approximation
to the required quantum force-force TCF.

Note Added in Proof. From Figures 4 and 5 one can see
that for the harmonic/exponential model the logarithmic average
of the harmonic and Schofield approximations would agree quite
well with the exact results. Such an average produces the
approximation

This new suggestion does not have strong theoretical justifica-
tion, and may or may not be a good approximation for specific
systems (for example, for the liquid oxygen problem at 70 K it
gives k1f0 = 8 s-1). But it does satisfy the basic symmetry
requirements of a quantum TCF, and does not suffer from the
low-frequency problems of the Egelstaff approximation.
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Figure 8. Classical (lower) and Egelstaff (upper) approximations to
Ĝ(ω) for liquid oxygen. The solid lines are directly calculated from
Gcl(t), while the dashed lines are their extrapolations to high frequency.

TABLE 1: k1f0 at 70 K for Liquid Oxygen, Theory and
Experimenta

experiment8 360 harmonic 0.015
classical 0.00047 Egelstaff 270
standard 0.00095 Schofield 4030

a All numbers in units of s-1.

Ĝ(ω) ) eâpω/4( âpω
1 - e-âpω)1/2

Ĝcl(ω).
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